Exercise 16

Normalize the vectors in Exercises 6 to 8. (Only the solution corresponding to Exercise 7 is in the Student Guide.)

Solution

In order to normalize a vector, divide it by its magnitude. This results in a unit vector, a vector that has a magnitude of 1 .

Exercise 6

$$
\begin{gathered}
\mathbf{u}=15 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k}, \mathbf{v}=\pi \mathbf{i}+3 \mathbf{j}-\mathbf{k} \\
\|\mathbf{u}\|=\sqrt{15^{2}+(-2)^{2}+4^{2}}=\sqrt{245} \\
\|\mathbf{v}\|=\sqrt{\pi^{2}+3^{2}+(-1)^{2}}=\sqrt{\pi^{2}+10}
\end{gathered}
$$

Normalize the vectors.

$$
\begin{aligned}
& \hat{\mathbf{u}}=\frac{\mathbf{u}}{\|\mathbf{u}\|}=\frac{1}{\sqrt{245}}(15 \mathbf{i}-2 \mathbf{j}+4 \mathbf{k}) \\
& \hat{\mathbf{v}}=\frac{\mathbf{v}}{\|\mathbf{v}\|}=\frac{1}{\sqrt{\pi^{2}+10}}(\pi \mathbf{i}+3 \mathbf{j}-\mathbf{k})
\end{aligned}
$$

Exercise 7

$$
\begin{gathered}
\mathbf{u}=2 \mathbf{j}-\mathbf{i}, \mathbf{v}=-\mathbf{j}+\mathbf{i} \\
\|\mathbf{u}\|=\sqrt{2^{2}+(-1)^{2}}=\sqrt{5} \\
\|\mathbf{v}\|=\sqrt{(-1)^{2}+1^{2}}=\sqrt{2}
\end{gathered}
$$

Normalize the vectors.

$$
\begin{aligned}
& \hat{\mathbf{u}}=\frac{\mathbf{u}}{\|\mathbf{u}\|}=\frac{1}{\sqrt{5}}(2 \mathbf{j}-\mathbf{i}) \\
& \hat{\mathbf{v}}=\frac{\mathbf{v}}{\|\mathbf{v}\|}=\frac{1}{\sqrt{2}}(-\mathbf{j}+\mathbf{i})
\end{aligned}
$$

Exercise 8

$$
\begin{aligned}
& \mathbf{u}=5 \mathbf{i}-\mathbf{j}+2 \mathbf{k}, \mathbf{v}=\mathbf{i}+\mathbf{j}-\mathbf{k} \\
& \|\mathbf{u}\|=\sqrt{5^{2}+(-1)^{2}+2^{2}}=\sqrt{30} \\
& \|\mathbf{v}\|=\sqrt{1^{2}+1^{2}+(-1)^{2}}=\sqrt{3}
\end{aligned}
$$

Normalize the vectors.

$$
\begin{aligned}
& \hat{\mathbf{u}}=\frac{\mathbf{u}}{\|\mathbf{u}\|}=\frac{1}{\sqrt{30}}(5 \mathbf{i}-\mathbf{j}+2 \mathbf{k}) \\
& \hat{\mathbf{v}}=\frac{\mathbf{v}}{\|\mathbf{v}\|}=\frac{1}{\sqrt{3}}(\mathbf{i}+\mathbf{j}-\mathbf{k})
\end{aligned}
$$

